Name of the Department: **Mathematics** Session: **2023-2024**

Course: Differential Calculus (MATH101TH)

Month	Weeks	Books/Unit/Topics	Teaching Methods/ Resources	Students activities
			Resources	
July	1 - 4	Unit-I: Limit and Continuity (epsilon & delta definition). Types of discontinuities, Differentiability of functions.	Teaching Methods: Lecture Methods/PPT Resources:	 Students Presentations Class tests Seminars Quiz
August	1	Successive differentiation, Leibnitz's Theorem	1. H.Anton, I. Birens& S. Davis,	5. Group Discussions
	2 - 4	Unit-II: Indeterminate forms, Rolle's Theorem, Lagrange's and Cauchy's Mean Value Theorems	Calculus, John Wiley & Sons, Inc., 2002.	
September	1-3	Taylor's theorem with Lagrange's and Cauchy's form of remainder, Taylor's series, Maclaurin's series	2. G.B. Thomas & R.L. Finney, Calculus, Pearson Education, 2017.	
	4	Unit -III: Concavity, Convexity and Points of inflexion.	3. T.M. Apostol, Calculus, Vol1, John Wiley &Sons,	
October	1-4	Curvature, Radius of Curvature, Centre of Curvature, Asymptotes, Singular points, Double points, Polar coordinates, Relation between Cartesian and Polar Coordinates.	2002.	
November	1 - 4	Unit -IV: Functions of several variables, Partial differentiation, Euler's Theorem on homogeneous functions		
December	1-4	Maxima and Minima of functions of several variables.		
February	1 - 2	Maxima and Minima with Lagrange multiplies method, Jacobians		
	2 -4	Revision,		

Name of the Department: **Mathematics** Session: **2023-2024**

Course: Differential Equations (MATH102TH)

Month	Weeks	Books/Unit/Topics	Teaching Methods/ Resources	Students activities
July	1 - 4	Unit-I: Basic theory of linear differential equations, Wronskian. First order exact differential equations. Integrating factors and rule to find integrating factor.	Teaching Methods: Lecture Methods/PPT Resources: 1. Sheply L., Ross	 Students Presentations Class tests Seminars Quiz Group
August	1	First order higher differential equations solvable for x, y, p, Clairut's form	Differential Equations, 3 rd Ed., John Wiley & Sons, 1984.	Discussions
	2 - 4	Unit-II: Methods of solving higher-order differential equations. Solving a differential equation by reducing its order.	2.I. Sneddon, Elements of Partial Differential Equations, MacGraw Hill International Edition, 1967.	
September	1 - 2	Linear homogenous equations with constant coefficients, Linear non-homogenous equations.		
	3-4	Unit -III: The method of variation of parameters with constant coefficients.		
October	1 - 4	The Cauchy-Euler equation and Legendre equation. Simultaneous differential equations, Total differential equations.		
November	1 - 2	Unit- IV: Order and degree of partial differential equations, Formation of first order partial differential equations.		
	2 - 4	Linear partial differential equations of first order,		
December	1 - 4	Lagrange's method and Classification of second order partial differential equations and Revision		
February	1 - 4	Revision,		

Name of the Department: **Mathematics** Session: **2023-2024**

Course: Transportation & Game Theory (MATH317TH)

Month	Weeks	Books/Unit/Topics	Teaching Methods/ Resources	Students activities
July	1 - 4	Unit-I: Transportation Problem and its mathematical formulation, northwest corner method, least cost method	Teaching Methods: Lecture Methods/PPT Resources:	 Students Presentations Class tests Seminars Quiz
August	1 - 4	Unit-II: Vogel approximation method for determination of starting basic solution,	1. Mokhtar S. Bazaraa, John J. Javis and Hanif D. Sherali, Linear Programming and NetworkFlows, 2 nd Ed., John Wiley & Sons, India, 2004. 2.Hamdy A. Taha, Operational Research, An Introduction, 8 th Ed.,	5. Group Discussions
September	1	Algorithm for solving transportation problem		
	2 - 4	Unit -III: Assignment problem and its mathematical formulation.		
October	1 - 2	Hungarian method for solving assignment problem.	Prentice – Hall India, 2006.	
	3 - 4	Unit -IV:Game theory, Formulation of two-person zero sum game.	3.F.S. Hillier and G.J. Lieberman, Introduction to Operational Research, 9 th Ed., Tata McGraw Hill, Singapore, 2009.	
November	1 - 4	Solving two-person zero sum games with mixed strategies,		
December	1 - 4	Graphical solution procedure. Revision		
February	1 - 4	Revision,		

Name of the Department: **Mathematics** Session: **2023-2024**

Course: Real Analysis (MATH201TH)

Month	Weeks	Books/Unit/Topics	Teaching Methods/ Resources	Students activities
July	1 - 4	Unit-I: Limit and Continuity (epsilon & delta definition). Types of discontinuities, Differentiability of functions.	Teaching Methods: Lecture Methods/PPT Resources:	 Students Presentations Class tests Seminars Quiz
August	1	Successive differentiation, Leibnitz's Theorem	1. E. Fischer, Intermediate Real	5. Group Discussions
	2 - 4	Unit-II: Indeterminate forms, Rolle's Theorem, Lagrange's and Cauchy's Mean Value Theorems	analysis, Springer, 1983. 2. R.G. Bartle and D.R. Sherbert, Introduction to Real Analysis, John Wiley and Sons (Asia) P. Ltd., 2000	
September	1-3	Taylor's theorem with Lagrange's and Cauchy's form of remainder, Taylor's series, Maclaurin's series		
	4	Unit -III: Concavity, Convexity and Points of inflexion.	3.K.A. Ross, Elementary Analysis	
October	1 - 4	Curvature, Radius of Curvature, Centre of Curvature, Asymptotes, Singular points, Double points, Polar coordinates, Relation between Cartesian and Polar Coordinates.	- The Theory of Calculus Series - Undergraduate Texts in Mathematics, Springer Verlag, 2003	
November	1 - 4	Unit -IV: Functions of several variables, Partial differentiation, Euler's Theorem on homogeneous functions	4.T.M. Apostol, Calculus, Vol1, John Wiley &Sons,	
December	1 - 4	Maxima and Minima of functions of several variables.	2002.	
February	1 - 2	Maxima and Minima with Lagrange multiplies method, Jacobians		
	2 -4	Revision,		

Name of the Department: **Mathematics** Session: 2023-2024

Course: Matrices (MATH301TH)

Month	Weeks	Books/Unit/Topics	Teaching Methods/ Resources	Students activities
July	1 - 4	Unit-I: Types of matrices, Rank of matrix, Invariance of rank under elementary transformations, Reduction to normal form,	Teaching Methods: Lecture Methods/PPT Resources:	 Students Presentations Class tests Seminars Quiz
August	1	Solution of linear homogeneous and non-homogeneous equations.	1. A.I. Kostrikin, Introduction to Algebra, Springer	5. Group Discussions
	2 - 4	Unit-II: Matrices in diagonal form, Reduction to diagonal form, Computation of matrix inverses using elementary row operations.	Verlag, 1984. 2.S.H. Friedberg, A.L.Isel and	
September	1 - 2	Rank of matrix. Solution of a system of linear equations using matrices. Illustrative examples of above concepts from geometry, physics, chemistry etc.	L.E.Spence, Linear Algerbra, Prentice Hall of India Pvt., Ltd., New Delhi, 2004.	
	3 - 4	Unit -III: Definition of Vector space, R,R2, R3, as vector spaces over R,	3. Richard Bronson, Theory and Problems of Matrix Operators, Tata McGraw	
October	1 - 4	Concept of Linear dependence/Independence, Standard basis for R,R2, R3, Examples of different bases, Subspaces of R2, R3.	Hill,1989.	
November	1 - 4	Unit -IV: Translation, Dilation, Rotation, Reflection in a point, line and plane, Matrix of basic geometric transformations.		
December	1 - 4	Interpretation of eigenvalues and eigenvectors for such transformations and eigenspaces as invariant subspaces.		
February	1-2	Questions on eigenvalues and eigenvectors, Revision,		

Name of the Department: **Mathematics** Session: 2023-2024

Course: Probability & Statistics (MATH313TH)

Month	Weeks	Books/Unit/Topics	Teaching Methods/ Resources	Students activities
July	1 - 4	Unit-I: Sample space, probability axioms, real random variables (discrete and continuous), cumulative distribution function.	Teaching Methods: Lecture Methods/PPT Resources:	 Students Presentations Class tests Seminars Quiz
August	1-2	Probability mass/density functions	1. Robert V. Hogg, Joseph W. McKean and Aen T. Craig,	5. Group Discussions
	3 - 4	Unit-II: Mathematical expectations, moments, moment generating functions.	Introduction to Mathematical Statistics, Pearson Education, Asia, 2007.	
September	1-3	Questions on moment generating functions, Characteristic function, discrete distribution: Uniform.	2.Irwin Miller and Marylees Miler, John	
	4	Unit -III: Binomial distribution,	E. Freund, Mathematical Statistics with	
October	1 - 4	Poisson distribution, continuous distributions: uniform, normal distribution	Application, 7 th Edition Pearson Education, Asia, 2006.	
November	1	Exponential distribution.	3. Sheldon Ross, Introduction to	
	3 -4	Unit -IV:Joint cumulative distribution function and its properties. Joint probability density functions	probability Model 9 th Ed. Academic Pres Indian Reprint, 2007.	
December	1 - 4	Marginal and conditional distributions, expectation of functions of two random variables.		
February	1-2	Conditional expectations, independent and random variables.		
	2 - 4	Revision		

Name of the Department: **Mathematics** Session: 2023-2024

Course: Integral Calculus (MATH309TH)

Month	Weeks	Books/Unit/Topics	Teaching Methods/ Resources	Students activities
July	1 - 4	Unit-I: Integration by Partial fractions Integration of rational and irrational functions.	Teaching Methods: Lecture Methods/PPT Resources:	 Students Presentations Class tests Seminars
August	1-2	Properties of definite integrals	1. G.B. Thomas & R.L. Finney,	4. Quiz 5. Group Discussions
	3 - 4	Unit-II: Reduction formulae.	Calculus, Pearson Education, 2017.	
September	1 - 3	Reduction formulae cont., Reduction by connecting two integrals Smaller index =1 method.	2.H. Anton, I. Bivens and S. Davis.	
	4	Unit -III: Curves in plane,	Calculus, john Wiely and Sons (Asia) P. Ltd., 2002.	
October	1 - 4	Area and length of curves in the plane volume and surfaces of solids of revolution	Etu., 2002.	
November	1	Cartesian and parametric form.		
	3 -4	Unit -IV:Double Integrals		
December	1 - 4	Triple integrals.		
February	1 - 2	Some questions on Double and triple integrals.		
	2 - 4	Revision		

Name of the Department: **Mathematics** Session: 2023-2024

Course: Vector Calculus (MATH310TH)

Month	Weeks	Books/Unit/Topics	Teaching Methods/ Resources	Students activities
July	1 - 4	Unit-I: Scalar and vector product of three vectors, Product of four vectors, Reciprocal vectors. Scalar valued point functions	Teaching Methods: Lecture Methods/PPT Resources:	 Students Presentations Class tests Seminars Quiz
August	1-3	Vector valued point functions. Derivative along a curve, directional derivatives.	1. G.B. Thomas & R.L. Finney, Calculus, Pearson Education, 2017.	5. Group Discussions
	3 - 4	Unit-II: Gradient of scalar point function.	2.H. Anton, I. Bivens	
September	1 - 4	Divergence and curl of a vector point function, Divergence and curl of sums and products. Laplacian operator.	and S. Davis. Calculus, john Wiely and Sons (Asia) P. Ltd., 2002.	
October	1 - 4	Unit -III:Orthogonal Curvilinear Coordinates, Condition for orthogonality. Fundamental triads of mutually orthogonal unit vectors.	3. P.C. Matthew's, Vector Calculus, Springer Verlag London Limited, 1998.	
November	1 - 2	Gradient, Divergence, curl and Laplacian operators in terms of orthogonal curvilinear coordinates.		
	3 -4	Unit -IV: Vector Integration		
December	1 - 4	Line, surface and volume integrals. Theorems of Gauss, Green and Stokes		
February	1-3	Problems based on Gauss, Green and Stokes Theorems.		
	4	Revision		

Name of the Department: **Mathematics** Session: 2023-2024

Course: Numerical Methods (MATH304TH)

Month	Weeks	Books/Unit/Topics	Teaching Methods/ Resources	Students activities
July	1 - 4	Unit-I: Algorithms, Convergence, Bisection method, False position method, Fixed point method.	Teaching Methods: Lecture Methods/PPT Resources:	1. Students Presentations 2. Class tests 3. Seminars
August	1-3	Newton's method, Secant method, LU decomposition.	1. B. Bradie, A Friendly	4. Quiz 5. Group Discussions
	4	Unit-II: Gauss-Jacobi method	Introduction to Numerical Analysis.	
September	1 - 4	Gauss-Seidel and SOR iterative methods, Problems based on these methods.	Pearson Education, India, 2007.	
			2.M. K. Jain, S. R. K. Iyenger and R. K.	
October	1 - 2	Lagrange and Newton interpolation: linear and higher order.	Jain, Numerical Methods for Scientific and Engineering Computation, 5 th Ed.,	
	3 - 4	Unit -III:Finite difference operators, Numerical differentiation.	New age International Publisher, India, 2007.	
November	1 - 2	Newton's forward difference and backward difference methods.		
	3 -4	Sterling's Central difference method, Problems based on above methods.		
December	1 - 4	Unit -IV:NumericalIntegration: Trapezoidal rule, Simpson's rule, questions on numerical integration.		
February	1 - 2	Euler's method.		
	3 - 4	Revision		

Name of the Department: **Mathematics** Session: 2023-2024

Course: Algebra (MATH202TH)

Month	Weeks	Books/Unit/Topics	Teaching Methods/ Resources	Students activities
July	1 - 4	Unit-I: Definition and examples of groups, examples of abelian and non-abelian groups, the group Zn of integers under addition modulo n.	Teaching Methods: Lecture Methods/PPT Resources:	 Students Presentations Class tests Seminars Quiz
August	1-3	The group U(n) of units under multiplication modulo n. Cyclic groups from number systems, complex roots of unity.	1. John B. Fraleigh, A FIrst Course in Abstract Algebra, 7 th Ed., Pearson, 2002.	5. Group Discussions
	4	Unit-II: Subgroups	2. M. Artin, Abstract Algebra, 2 nd Ed.,	
September	1-4	Cycle subgroups, the concept of a subgroup generated by a subset and the commutator subgroup of a group, examples of subgroups.	Pearson, 2011. 3. Joseph A Gallian, Contemporary Abstract Algebra, 4 th Ed., Narosa, 1999.	
October	1 - 2	Center of a group, Cosets, Index of subgroups, Lagrange's theorem, order of an element.		
	3 - 4	Unit -III:Normal subgroups: their definition, examples and characterization,		
November	1-4	Quotient groups. Kernel, Basic theorem of Homomorphism. First theorem of Homomorphism.		
December	1 - 4	Unit -IV:Definition and examples of Rings, examples of commutative and non-commutative rings: rings from number systems, Zn the ring of integers modulo n. Rings of matrices.		
February	1 - 3	Polynomial rings, subrings and ideals, definition of Integral domain and fields.		
	3 - 4	Revision		